基本组件:Handler、Pipeline 与 ByteBuf
# 1. Handler 与 Pipeline
Pipeline 好比一条流水线,Handler 好比流水线上一道一道的工序,上面流动的就是你要分批处理的数据
ChannelHandler 用来处理 Channel 上的各种事件,分为入站、出站两种。所有 ChannelHandler 被连成一串,就是 Pipeline
- 入站处理器通常是 ChannelInboundHandlerAdapter 的子类,主要用来读取客户端数据,写回结果
- 出站处理器通常是 ChannelOutboundHandlerAdapter 的子类,主要对写回结果进行加工
public class PipeLineServer {
public static void main(String[] args) {
new ServerBootstrap()
.group(new NioEventLoopGroup())
.channel(NioServerSocketChannel.class)
.childHandler(new ChannelInitializer<SocketChannel>() {
@Override
protected void initChannel(SocketChannel socketChannel) throws Exception {
// 在socketChannel的pipeline中添加handler
// pipeline中handler是带有head与tail节点的双向链表,的实际结构为
// head <-> handler1 <-> ... <-> handler4 <->tail
// Inbound主要处理入站操作,一般为读操作,发生入站操作时会触发Inbound方法
// 入站时,handler是从head向后调用的
socketChannel.pipeline().addLast("handler1" ,new ChannelInboundHandlerAdapter() {
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
System.out.println(Thread.currentThread().getName() + " Inbound handler 1");
// 父类该方法内部会调用fireChannelRead
// 将数据传递给下一个handler
super.channelRead(ctx, msg);
}
});
socketChannel.pipeline().addLast("handler2", new ChannelInboundHandlerAdapter() {
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
System.out.println(Thread.currentThread().getName() + " Inbound handler 2");
// 执行write操作,使得Outbound的方法能够得到调用
socketChannel.writeAndFlush(ctx.alloc().buffer().writeBytes("Server...".getBytes(StandardCharsets.UTF_8)));
super.channelRead(ctx, msg);
}
});
// Outbound主要处理出站操作,一般为写操作,发生出站操作时会触发Outbound方法
// 出站时,handler的调用是从tail向前调用的
socketChannel.pipeline().addLast("handler3" ,new ChannelOutboundHandlerAdapter(){
@Override
public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
System.out.println(Thread.currentThread().getName() + " Outbound handler 1");
super.write(ctx, msg, promise);
}
});
socketChannel.pipeline().addLast("handler4" ,new ChannelOutboundHandlerAdapter(){
@Override
public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
System.out.println(Thread.currentThread().getName() + " Outbound handler 2");
super.write(ctx, msg, promise);
}
});
}
})
.bind(8080);
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
运行结果如下:
nioEventLoopGroup-2-2 Inbound handler 1
nioEventLoopGroup-2-2 Inbound handler 2
nioEventLoopGroup-2-2 Outbound handler 2
nioEventLoopGroup-2-2 Outbound handler 1
2
3
4
通过 channel.pipeline().addLast(name, handler) 可以在 pipeline 中添加 handler,记得给 handler 取名字,这样可以调用 pipeline 的 addAfter、addBefore 等方法更灵活地向 pipeline 中添加 handler。
handler 需要放入通道的 pipeline 中,才能根据放入顺序来使用 handler:
- pipeline 是结构是一个带有 head 与 tail 指针的双向链表,其中的每个节点为 handler
- 要通过
ctx.fireChannelRead(msg)
等方法,将当前 handler 的处理结果传递给下一个 handler ctx.fireChannelRead(msg)
已经被super.channelRead()
或super.write()
所封装- 如果不直接或间接调用这个
ctx.fireChannelRead(msg)
,那调用链就会断掉。
- 要通过
- 当有入站(Inbound)操作时,会从 head 开始向后调用 handler,直到 handler 不是处理 Inbound 操作为止
- 当有出站(Outbound)操作时,会从 tail 开始向前调用 handler,直到 handler 不是处理 Outbound 操作为止
结构如下:
调用顺序如下:
# 1.1 Inbound Handler
以示例代码的 handler 1、handler 2 为例,看一下 Inbound Handler。
入站处理器继承自 ChannelInboundHandlerAdapter,需要重写其中的 channelRead
来处理读取的消息 Object msg
。第一个 handler 得到的 msg 就是原始 IO 读取到的数据,后面 handler 得到的 msg 是前面 handler 处理后传给他的 msg。每一个 handler 在处理完 msg 后,调用 super.channelRead(ctx, msg);
来交由下一个 inbound handler。
# 1.2 Outbound Handler
以示例代码的 handler 3、handler 4 为例,看一下 Inbound Handler。
出站处理器继承自 ChannelOutboundHandlerAdapter,需要重写其中的 write
来处理对外写的消息,在 handler 处理完之后,需要调用 super.write(ctx, msg, promise)
来交由上一个 outbound handler。
小细节:socketChannel.writeAndFlush
VS ctx.writeAndFlush()
socketChannel.writeAndFlush()
:当handler中调用该方法进行写操作时,会触发Outbound操作,此时是从tail向前寻找OutboundHandler
ctx.writeAndFlush()
:当handler中调用该方法进行写操作时,会触发Outbound操作,此时是从当前handler向前寻找OutboundHandler
super.write()
是对 socketChannel.writeAndFlush()
,这才是合理的,所以应该在 handler 中调用这个。
# 1.3 EmbeddedChannel
EmbeddedChannel 是一个用于调试的工具类,可以用于测试各个 handler。通过其构造函数按顺序传入需要测试 handler,然后调用对应的 Inbound 和 Outbound 方法即可。
public class TestEmbeddedChannel {
public static void main(String[] args) {
ChannelInboundHandlerAdapter h1 = new ChannelInboundHandlerAdapter() {
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
System.out.println("1");
super.channelRead(ctx, msg);
}
};
ChannelInboundHandlerAdapter h2 = new ChannelInboundHandlerAdapter() {
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
System.out.println("2");
super.channelRead(ctx, msg);
}
};
ChannelOutboundHandlerAdapter h3 = new ChannelOutboundHandlerAdapter() {
@Override
public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
System.out.println("3");
super.write(ctx, msg, promise);
}
};
ChannelOutboundHandlerAdapter h4 = new ChannelOutboundHandlerAdapter() {
@Override
public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
System.out.println("4");
super.write(ctx, msg, promise);
}
};
// 用于测试Handler的Channel
EmbeddedChannel channel = new EmbeddedChannel(h1, h2, h3, h4);
// 模拟入站操作,执行 Inbound 操作
channel.writeInbound(ByteBufAllocator.DEFAULT.buffer().writeBytes("hello".getBytes(StandardCharsets.UTF_8)));
// 模拟出站操作,执行 Outbound 操作
channel.writeOutbound(ByteBufAllocator.DEFAULT.buffer().writeBytes("hello".getBytes(StandardCharsets.UTF_8)));
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# 2. ByteBuf
ByteBuf 是对 NIO 中的 ByteBuffer 的增强。
为了方便,先写一个调试工具方法,该方法可以帮助我们更为详细地查看 ByteBuf 中的内容:
private static void log(ByteBuf buffer) {
int length = buffer.readableBytes();
int rows = length / 16 + (length % 15 == 0 ? 0 : 1) + 4;
StringBuilder buf = new StringBuilder(rows * 80 * 2)
.append("read index:").append(buffer.readerIndex())
.append(" write index:").append(buffer.writerIndex())
.append(" capacity:").append(buffer.capacity())
.append(NEWLINE);
appendPrettyHexDump(buf, buffer);
System.out.println(buf.toString());
}
2
3
4
5
6
7
8
9
10
11
# 2.1 ByteBuf 的创建
- 使用
ByteBufAllocator.DEFAULT.buffer()
可以创建一个默认的 ByteBuf
public class ByteBufStudy {
public static void main(String[] args) {
// 创建ByteBuf
ByteBuf buffer = ByteBufAllocator.DEFAULT.buffer(16);
ByteBufUtil.log(buffer);
// 向buffer中写入数据
StringBuilder sb = new StringBuilder();
for(int i = 0; i < 20; i++) {
sb.append("a");
}
buffer.writeBytes(sb.toString().getBytes(StandardCharsets.UTF_8));
// 查看写入结果
ByteBufUtil.log(buffer);
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
ByteBuf 通过 ByteBufAllocator 选择 allocator 并调用对应的 buffer() 方法来创建的,默认使用直接内存作为 ByteBuf,容量为 256 个字节,可以指定初始容量的大小。
当 ByteBuf 的容量无法容纳所有数据时,ByteBuf 会进行自动扩容操作。
如果在 handler 中创建 ByteBuf,建议使用 ChannelHandlerContext ctx.alloc().buffer()
来创建。
# 2.2 直接内存 vs 堆内存
之前说过,堆内存的分配效率比较高,但读写效率比较低,而直接内存分配效率比较低,但读写效率比较高(因为 zero-copy)。
- 创建池化基于堆内存的 ByteBuf:
ByteBufAllocator.DEFAULT.heapBuffer(16);
- 创建池化基于直接内存的 ByteBuf:
yteBufAllocator.DEFAULT.directBuffer(16);
或ByteBufAllocator.DEFAULT.buffer(16);
在选择时,需要考虑到:
- 直接内存创建和销毁的代价昂贵,但读写性能高(少一次内存复制),适合配合池化功能一起用
- 直接内存对 GC 压力小,因为这部分内存不受 JVM 垃圾回收的管理,但也要注意及时主动释放
# 2.3 池化 vs 非池化
这里的池化是指对分配的内存的池化,避免每次使用内存都是申请内存再释放内存。池化的最大意义在于可以重用 ByteBuf,优点有:
- 没有池化,则每次都得创建新的 ByteBuf 实例,这个操作对直接内存代价昂贵,就算是堆内存,也会增加 GC 压力
- 有了池化,则可以重用池中 ByteBuf 实例,并且采用了与 jemalloc 类似的内存分配算法提升分配效率
- 高并发时,池化功能更节约内存,减少内存溢出的可能
池化功能是否开启,可以通过下面的系统环境变量来设置:
-Dio.netty.allocator.type={unpooled|pooled}
- 4.1 以后,非 Android 平台默认启用池化实现,Android 平台启用非池化实现
- 4.1 之前,池化功能还不成熟,默认是非池化实现
看一下例子:
public class ByteBufStudy {
public static void main(String[] args) {
ByteBuf buffer = ByteBufAllocator.DEFAULT.buffer(16);
System.out.println(buffer.getClass());
buffer = ByteBufAllocator.DEFAULT.heapBuffer(16);
System.out.println(buffer.getClass());
buffer = ByteBufAllocator.DEFAULT.directBuffer(16);
System.out.println(buffer.getClass());
}
}
2
3
4
5
6
7
8
9
10
11
12
打印结果:
// 使用池化的直接内存
class io.netty.buffer.PooledUnsafeDirectByteBuf
// 使用池化的堆内存
class io.netty.buffer.PooledUnsafeHeapByteBuf
// 使用池化的直接内存
class io.netty.buffer.PooledUnsafeDirectByteBuf
2
3
4
5
6
7
8
# 2.4 ByteBuf 的组成
ByteBuf 主要有以下几个组成部分:
- 最大容量与当前容量
- 在构造 ByteBuf 时,可传入两个参数,分别代表初始容量和最大容量,若未传入第二个参数(最大容量),最大容量默认为 Integer.MAX_VALUE
- 当 ByteBuf 容量无法容纳所有数据时,会进行扩容操作,若超出最大容量,会抛出
java.lang.IndexOutOfBoundsException
异常
- 读写操作不同于 ByteBuffer 只用 position 进行控制,ByteBuf 分别由读指针和写指针两个指针控制。进行读写操作时,无需进行模式的切换
- 读指针前的部分被称为废弃部分,是已经读过的内容
- 读指针与写指针之间的空间称为可读部分
- 写指针与当前容量之间的空间称为可写部分
# 2.5 ByteBuf 的写入
常用方法:
方法签名 | 含义 | 备注 |
---|---|---|
writeBoolean(boolean value) | 写入 boolean 值 | 用一字节 01|00 代表 true|false |
writeByte(int value) | 写入 byte 值 | |
writeShort(int value) | 写入 short 值 | |
writeInt(int value) | 写入 int 值 | Big Endian,即 0x250,写入后 00 00 02 50 |
writeIntLE(int value) | 写入 int 值 | Little Endian,即 0x250,写入后 50 02 00 00 |
writeLong(long value) | 写入 long 值 | |
writeChar(int value) | 写入 char 值 | |
writeFloat(float value) | 写入 float 值 | |
writeDouble(double value) | 写入 double 值 | |
writeBytes(ByteBuf src) | 写入 netty 的 ByteBuf | |
writeBytes(byte[] src) | 写入 byte[] | |
writeBytes(ByteBuffer src) | 写入 nio 的 ByteBuffer | |
int writeCharSequence(CharSequence sequence, Charset charset) | 写入字符串 |
- 这些方法的未指明返回值的,其返回值都是 ByteBuf,意味着可以链式调用来写入不同的数据
- 网络传输中,默认习惯是 Big Endian,使用 writeInt(int value)
# 2.6 扩容
当 ByteBuf 中的容量无法容纳写入的数据时,会进行扩容操作:
buffer.writeLong(7);
ByteBufUtil.log(buffer);
2
结果:
// 扩容前
read index:0 write index:12 capacity:16
...
// 扩容后
read index:0 write index:20 capacity:20
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 00 00 00 05 06 00 00 00 00 00 00 00 |................|
|00000010| 00 00 00 07 |.... |
+--------+-------------------------------------------------+----------------+
2
3
4
5
6
7
8
9
10
11
12
扩容规则:
- 如何写入后数据大小未超过 512 字节,则选择下一个 16 的整数倍进行扩容
- 例如写入后大小为 12 字节,则扩容后 capacity 是 16 字节
- 如果写入后数据大小超过 512 字节,则选择下一个 2n
- 例如写入后大小为 513 字节,则扩容后 capacity 是 210=1024 字节(29=512 已经不够了)
- 扩容不能超过 maxCapacity,否则会抛出
java.lang.IndexOutOfBoundsException
异常
# 2.7 读取
读取主要是通过一系列 read 方法进行读取,读取时会根据读取数据的字节数移动读指针
如果需要重复读取,需要调用 buffer.markReaderIndex()
对读指针进行标记,并通过 buffer.resetReaderIndex()
将读指针恢复到 mark 标记的位置:
public class ByteBufStudy {
public static void main(String[] args) {
// 创建ByteBuf
ByteBuf buffer = ByteBufAllocator.DEFAULT.buffer(16, 20);
// 向buffer中写入数据
buffer.writeBytes(new byte[]{1, 2, 3, 4});
buffer.writeInt(5);
// 读取4个字节
System.out.println(buffer.readByte());
System.out.println(buffer.readByte());
System.out.println(buffer.readByte());
System.out.println(buffer.readByte());
ByteBufUtil.log(buffer);
// 通过mark与reset实现重复读取
buffer.markReaderIndex();
System.out.println(buffer.readInt());
ByteBufUtil.log(buffer);
// 恢复到mark标记处
buffer.resetReaderIndex();
ByteBufUtil.log(buffer);
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
打印结果:
1
2
3
4
read index:4 write index:8 capacity:16
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 00 00 00 05 |.... |
+--------+-------------------------------------------------+----------------+
5
read index:8 write index:8 capacity:16
read index:4 write index:8 capacity:16
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 00 00 00 05 |.... |
+--------+-------------------------------------------------+----------------+
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
还有以 get 开头的一系列方法,这些方法不会改变读指针的位置
# 2.8 ByteBuf 的内存回收
由于 Netty 中有堆外内存(直接内存)的 ByteBuf 实现,堆外内存最好是手动来释放,而不是等 GC 垃圾回收。
- UnpooledHeapByteBuf 使用的是 JVM 内存,只需等 GC 回收内存即可
- UnpooledDirectByteBuf 使用的就是直接内存了,需要特殊的方法来回收内存
- PooledByteBuf 和它的子类使用了池化机制,需要更复杂的规则来回收内存
Netty 这里采用了引用计数法来控制回收内存,每个 ByteBuf 都实现了 ReferenceCounted 接口:
- 每个 ByteBuf 对象的初始计数为 1
- 调用 release 方法计数减 1,如果计数为 0,ByteBuf 内存被回收
- 调用 retain 方法计数加 1,表示调用者没用完之前,其它 handler 即使调用了 release 也不会造成回收
- 当计数为 0 时,底层内存会被回收,这时即使 ByteBuf 对象还在,其各个方法均无法正常使用
# 2.8.1 释放规则
由于 handler pipeline 的存在,一般需要将 ByteBuf 传递给下一个 ChannelHandler,如果在每个 ChannelHandler 中都去调用 release ,就失去了传递性(如果在这个 ChannelHandler 内这个 ByteBuf 已完成了它的使命,那么便无须再传递)
基本规则是,哪个 handler 是最后使用者,哪个 handler 负责 release:
- 起点,对于 NIO 实现来讲,在 io.netty.channel.nio.AbstractNioByteChannel.NioByteUnsafe.read 方法中首次创建 ByteBuf 放入 pipeline
- 入站 ByteBuf 处理原则
- 对原始 ByteBuf 不做处理,调用 ctx.fireChannelRead(msg) 向后传递,这时无须 release
- 将原始 ByteBuf 转换为其它类型的 Java 对象,这时 ByteBuf 就没用了,必须 release
- 如果不调用 ctx.fireChannelRead(msg) 向后传递,那么也必须 release
- 注意各种异常,如果 ByteBuf 没有成功传递到下一个 ChannelHandler,必须 release
- 假设消息一直向后传,那么 TailContext 会负责释放未处理消息(原始的 ByteBuf)
- 出站 ByteBuf 处理原则
- 出站消息最终都会转为 ByteBuf 输出,一直向前传,由 HeadContext flush 后 release
- 异常处理原则
- 有时候不清楚 ByteBuf 被引用了多少次,但又必须彻底释放,可以循环调用 release 直到返回 true
while (!buffer.release()) {}
当 ByteBuf 被传到了 pipeline 的 head 与 tail 时,ByteBuf 会被其中的方法彻底释放,但前提是 ByteBuf 被传递到了 head 与 tail 中。
# 2.8.2 TailConext 中释放 ByteBuf 的源码
protected void onUnhandledInboundMessage(Object msg) {
try {
logger.debug("Discarded inbound message {} that reached at the tail of the pipeline. Please check your pipeline configuration.", msg);
} finally {
// 具体的释放方法
ReferenceCountUtil.release(msg);
}
}
2
3
4
5
6
7
8
判断传过来的是否为 ByteBuf,是的话才需要释放:
public static boolean release(Object msg) {
return msg instanceof ReferenceCounted ? ((ReferenceCounted)msg).release() : false;
}
2
3
# 2.9 切片(Slice)
切片操作:ByteBuf slice1 = buffer.slice(0, 5);
ByteBuf 的切片是零拷贝的体现之一。对原始 ByteBuf 进行切片成多个 ByteBuf,切片后的 ByteBuf 并没有发生内存复制,还是使用原始 ByteBuf 的内存,切片后的 ByteBuf 维护独立的 read、write 指针。
这里的“零拷贝”说的是从减少数据复制的角度来说的,并不是说的操作系统的零拷贝。
修改原 ByteBuf 中的值,也会影响切片后得到的 ByteBuf。
得到分片后的 buffer 后,要调用其 retain
方法,使其内部的引用计数加一。避免原 ByteBuf 释放,导致切片 buffer 无法使用
一个使用示例:
public class TestSlice {
public static void main(String[] args) {
// 创建ByteBuf
ByteBuf buffer = ByteBufAllocator.DEFAULT.buffer(16, 20);
// 向buffer中写入数据
buffer.writeBytes(new byte[]{1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
// 将buffer分成两部分
ByteBuf slice1 = buffer.slice(0, 5);
ByteBuf slice2 = buffer.slice(5, 5);
// 需要让分片的buffer引用计数加一
// 避免原Buffer释放导致分片buffer无法使用
slice1.retain();
slice2.retain();
ByteBufUtil.log(slice1);
ByteBufUtil.log(slice2);
// 更改原始buffer中的值
System.out.println("===========修改原buffer中的值===========");
buffer.setByte(0,5);
System.out.println("===========打印slice1===========");
ByteBufUtil.log(slice1);
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
注意:
- 切片后的 ByteBuf 在底层上是复用的原有内存区间,切片后的 max capacity 被固定为这个区间的大小,因此不能做追加 write。
# 2.10 duplicate
也是【零拷贝】的体现之一,就好比截取了原始 ByteBuf 所有内容,并且没有 max capacity 的限制,也是与原始 ByteBuf 使用同一块底层内存,只是读写指针是独立的。
# 2.11 copy
会将底层内存数据进行深拷贝,因此无论读写,都与原始 ByteBuf 无关
# 2.12 CompositeByteBuf
【零拷贝】的体现之一,可以将多个 ByteBuf 合并为一个逻辑上的 ByteBuf,避免拷贝。
示例:
// buf1
ByteBuf buf1 = ByteBufAllocator.DEFAULT.buffer(5);
buf1.writeBytes(new byte[]{1, 2, 3, 4, 5});
// buf2
ByteBuf buf2 = ByteBufAllocator.DEFAULT.buffer(5);
buf2.writeBytes(new byte[]{6, 7, 8, 9, 10});
// composite
CompositeByteBuf buf3 = ByteBufAllocator.DEFAULT.compositeBuffer();
// true 表示增加新的 ByteBuf 自动递增 write index, 否则 write index 会始终为 0
buf3.addComponents(true, buf1, buf2);
2
3
4
5
6
7
8
9
10
CompositeByteBuf 是一个组合的 ByteBuf,它内部维护了一个 Component 数组,每个 Component 管理一个 ByteBuf,记录了这个 ByteBuf 相对于整体偏移量等信息,代表着整体中某一段的数据。
- 优点,对外是一个虚拟视图,组合这些 ByteBuf 不会产生内存复制
- 缺点,复杂了很多,多次操作会带来性能的损耗
# 2.13 Unpooled
Unpooled 是一个工具类,类如其名,提供了非池化的 ByteBuf 创建、组合、复制等操作
这里仅介绍其跟【零拷贝】相关的 wrappedBuffer 方法,可以用来包装 ByteBuf:
ByteBuf buf1 = ByteBufAllocator.DEFAULT.buffer(5);
buf1.writeBytes(new byte[]{1, 2, 3, 4, 5});
ByteBuf buf2 = ByteBufAllocator.DEFAULT.buffer(5);
buf2.writeBytes(new byte[]{6, 7, 8, 9, 10});
// 当包装 ByteBuf 个数超过一个时, 底层使用了 CompositeByteBuf
ByteBuf buf3 = Unpooled.wrappedBuffer(buf1, buf2);
System.out.println(ByteBufUtil.prettyHexDump(buf3));
2
3
4
5
6
7
8
也可以用来包装普通字节数组,底层也不会有拷贝操作:
ByteBuf buf4 = Unpooled.wrappedBuffer(new byte[]{1, 2, 3}, new byte[]{4, 5, 6});
System.out.println(buf4.getClass());
System.out.println(ByteBufUtil.prettyHexDump(buf4));
2
3
# 2.14 💡 ByteBuf 优势总结
- 池化 - 可以重用池中 ByteBuf 实例,更节约内存,减少内存溢出的可能
- 读写指针分离,不需要像 ByteBuffer 一样切换读写模式
- 可以自动扩容
- 支持链式调用,使用更流畅
- 很多地方体现零拷贝,例如 slice、duplicate、CompositeByteBuf
# 3. 双向通信
# 3.1 一个关于读和写的误解
我最初在认识上有这样的误区,认为只有在 netty,nio 这样的多路复用 IO 模型时,读写才不会相互阻塞,才可以实现高效的双向通信,但实际上,Java Socket 是全双工的:在任意时刻,线路上存在A 到 B
和 B 到 A
的双向信号传输。即使是阻塞 IO,读和写是可以同时进行的,只要分别采用读线程和写线程即可,读不会阻塞写、写也不会阻塞读。
# 3.2 练习:echo server
编写 server:
new ServerBootstrap()
.group(new NioEventLoopGroup())
.channel(NioServerSocketChannel.class)
.childHandler(new ChannelInitializer<NioSocketChannel>() {
@Override
protected void initChannel(NioSocketChannel ch) {
ch.pipeline().addLast(new ChannelInboundHandlerAdapter(){
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) {
ByteBuf buffer = (ByteBuf) msg;
System.out.println(buffer.toString(Charset.defaultCharset()));
// 建议使用 ctx.alloc() 创建 ByteBuf
ByteBuf response = ctx.alloc().buffer();
response.writeBytes(buffer);
ctx.writeAndFlush(response);
// 思考:需要释放 buffer 吗
// 思考:需要释放 response 吗
}
});
}
}).bind(8080);
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
编写 client:
NioEventLoopGroup group = new NioEventLoopGroup();
Channel channel = new Bootstrap()
.group(group)
.channel(NioSocketChannel.class)
.handler(new ChannelInitializer<NioSocketChannel>() {
@Override
protected void initChannel(NioSocketChannel ch) throws Exception {
ch.pipeline().addLast(new StringEncoder());
ch.pipeline().addLast(new ChannelInboundHandlerAdapter() {
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) {
ByteBuf buffer = (ByteBuf) msg;
System.out.println(buffer.toString(Charset.defaultCharset()));
// 思考:需要释放 buffer 吗
}
});
}
}).connect("127.0.0.1", 8080).sync().channel();
channel.closeFuture().addListener(future -> {
group.shutdownGracefully();
});
new Thread(() -> {
Scanner scanner = new Scanner(System.in);
while (true) {
String line = scanner.nextLine();
if ("q".equals(line)) {
channel.close();
break;
}
channel.writeAndFlush(line);
}
}).start();
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35