notebook notebook
首页
  • 计算机网络
  • 计算机系统
  • 数据结构与算法
  • 计算机专业课
  • 设计模式
  • 前端 (opens new window)
  • Java 开发
  • Python 开发
  • Golang 开发
  • Git
  • 软件设计与架构
  • 大数据与分布式系统
  • 常见开发工具

    • Nginx
  • 爬虫
  • Python 数据分析
  • 数据仓库
  • 中间件

    • MySQL
    • Redis
    • Elasticsearch
    • Kafka
  • 深度学习
  • 机器学习
  • 知识图谱
  • 图神经网络
  • 应用安全
  • 渗透测试
  • Linux
  • 云原生
面试
  • 收藏
  • paper 好句
GitHub (opens new window)

学习笔记

啦啦啦,向太阳~
首页
  • 计算机网络
  • 计算机系统
  • 数据结构与算法
  • 计算机专业课
  • 设计模式
  • 前端 (opens new window)
  • Java 开发
  • Python 开发
  • Golang 开发
  • Git
  • 软件设计与架构
  • 大数据与分布式系统
  • 常见开发工具

    • Nginx
  • 爬虫
  • Python 数据分析
  • 数据仓库
  • 中间件

    • MySQL
    • Redis
    • Elasticsearch
    • Kafka
  • 深度学习
  • 机器学习
  • 知识图谱
  • 图神经网络
  • 应用安全
  • 渗透测试
  • Linux
  • 云原生
面试
  • 收藏
  • paper 好句
GitHub (opens new window)
  • Java开发

    • My

    • Posts

    • Java SE

    • Java 并发编程

    • JVM

    • JDBC

    • Java Web

    • Spring 与 SpringMVC

    • Spring Boot

    • Spring Cloud

    • Spring Security

    • Netty

      • 黑马 Netty

        • NIO 基础与 ByteBuffer
        • 文件编程
        • 网络编程
        • Netty 入门
        • 基本组件:EventLoop、Channel、Future 与 Promise
        • 基本组件:Handler、Pipeline 与 ByteBuf
          • 1. Handler 与 Pipeline
            • 1.1 Inbound Handler
            • 1.2 Outbound Handler
            • 1.3 EmbeddedChannel
          • 2. ByteBuf
            • 2.1 ByteBuf 的创建
            • 2.2 直接内存 vs 堆内存
            • 2.3 池化 vs 非池化
            • 2.4 ByteBuf 的组成
            • 2.5 ByteBuf 的写入
            • 2.6 扩容
            • 2.7 读取
            • 2.8 ByteBuf 的内存回收
            • 2.9 切片(Slice)
            • 2.10 duplicate
            • 2.11 copy
            • 2.12 CompositeByteBuf
            • 2.13 Unpooled
            • 2.14 💡 ByteBuf 优势总结
          • 3. 双向通信
            • 3.1 一个关于读和写的误解
            • 3.2 练习:echo server
        • 应用一:粘包与半包问题
        • 应用二:协议设计与解析
        • Netty 优化
    • MyBatis

  • Python开发

  • Golang开发

  • Git

  • 软件设计与架构

  • 大数据与分布式系统

  • 区块链

  • Nginx

  • 开发
  • Java开发
  • Netty
  • 黑马 Netty
yubin
2023-11-12
目录

基本组件:Handler、Pipeline 与 ByteBuf

# 1. Handler 与 Pipeline

Pipeline 好比一条流水线,Handler 好比流水线上一道一道的工序,上面流动的就是你要分批处理的数据

ChannelHandler 用来处理 Channel 上的各种事件,分为入站、出站两种。所有 ChannelHandler 被连成一串,就是 Pipeline

  • 入站处理器通常是 ChannelInboundHandlerAdapter 的子类,主要用来读取客户端数据,写回结果
  • 出站处理器通常是 ChannelOutboundHandlerAdapter 的子类,主要对写回结果进行加工













 








 










 






 












public class PipeLineServer {
    public static void main(String[] args) {
        new ServerBootstrap()
                .group(new NioEventLoopGroup())
                .channel(NioServerSocketChannel.class)
                .childHandler(new ChannelInitializer<SocketChannel>() {
                    @Override
                    protected void initChannel(SocketChannel socketChannel) throws Exception {
                        // 在socketChannel的pipeline中添加handler
                        // pipeline中handler是带有head与tail节点的双向链表,的实际结构为
                        // head <-> handler1 <-> ... <-> handler4 <->tail
                        // Inbound主要处理入站操作,一般为读操作,发生入站操作时会触发Inbound方法
                        // 入站时,handler是从head向后调用的
                        socketChannel.pipeline().addLast("handler1" ,new ChannelInboundHandlerAdapter() {
                            @Override
                            public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
                                System.out.println(Thread.currentThread().getName() + " Inbound handler 1");
                                // 父类该方法内部会调用fireChannelRead
                                // 将数据传递给下一个handler
                                super.channelRead(ctx, msg);
                            }
                        });
                        socketChannel.pipeline().addLast("handler2", new ChannelInboundHandlerAdapter() {
                            @Override
                            public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
                                System.out.println(Thread.currentThread().getName() + " Inbound handler 2");
                                // 执行write操作,使得Outbound的方法能够得到调用
          socketChannel.writeAndFlush(ctx.alloc().buffer().writeBytes("Server...".getBytes(StandardCharsets.UTF_8)));
                                super.channelRead(ctx, msg);
                            }
                        });
                        // Outbound主要处理出站操作,一般为写操作,发生出站操作时会触发Outbound方法
                        // 出站时,handler的调用是从tail向前调用的
                        socketChannel.pipeline().addLast("handler3" ,new ChannelOutboundHandlerAdapter(){
                            @Override
                            public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
                                System.out.println(Thread.currentThread().getName() + " Outbound handler 1");
                                super.write(ctx, msg, promise);
                            }
                        });
                        socketChannel.pipeline().addLast("handler4" ,new ChannelOutboundHandlerAdapter(){
                            @Override
                            public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
                                System.out.println(Thread.currentThread().getName() + " Outbound handler 2");
                                super.write(ctx, msg, promise);
                            }
                        });
                    }
                })
                .bind(8080);
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

运行结果如下:

nioEventLoopGroup-2-2 Inbound handler 1
nioEventLoopGroup-2-2 Inbound handler 2
nioEventLoopGroup-2-2 Outbound handler 2
nioEventLoopGroup-2-2 Outbound handler 1
1
2
3
4

通过 channel.pipeline().addLast(name, handler) 可以在 pipeline 中添加 handler,记得给 handler 取名字,这样可以调用 pipeline 的 addAfter、addBefore 等方法更灵活地向 pipeline 中添加 handler。

handler 需要放入通道的 pipeline 中,才能根据放入顺序来使用 handler:

  • pipeline 是结构是一个带有 head 与 tail 指针的双向链表,其中的每个节点为 handler
    • 要通过 ctx.fireChannelRead(msg) 等方法,将当前 handler 的处理结果传递给下一个 handler
    • ctx.fireChannelRead(msg) 已经被 super.channelRead() 或 super.write() 所封装
    • 如果不直接或间接调用这个 ctx.fireChannelRead(msg),那调用链就会断掉。
  • 当有入站(Inbound)操作时,会从 head 开始向后调用 handler,直到 handler 不是处理 Inbound 操作为止
  • 当有出站(Outbound)操作时,会从 tail 开始向前调用 handler,直到 handler 不是处理 Outbound 操作为止

结构如下:

20231112210721

调用顺序如下:

20231112210806

# 1.1 Inbound Handler

以示例代码的 handler 1、handler 2 为例,看一下 Inbound Handler。

入站处理器继承自 ChannelInboundHandlerAdapter,需要重写其中的 channelRead 来处理读取的消息 Object msg。第一个 handler 得到的 msg 就是原始 IO 读取到的数据,后面 handler 得到的 msg 是前面 handler 处理后传给他的 msg。每一个 handler 在处理完 msg 后,调用 super.channelRead(ctx, msg); 来交由下一个 inbound handler。

# 1.2 Outbound Handler

以示例代码的 handler 3、handler 4 为例,看一下 Inbound Handler。

出站处理器继承自 ChannelOutboundHandlerAdapter,需要重写其中的 write 来处理对外写的消息,在 handler 处理完之后,需要调用 super.write(ctx, msg, promise) 来交由上一个 outbound handler。

小细节:socketChannel.writeAndFlush VS ctx.writeAndFlush()

  • socketChannel.writeAndFlush():当handler中调用该方法进行写操作时,会触发Outbound操作,此时是从tail向前寻找OutboundHandler
20231112212912
  • ctx.writeAndFlush():当handler中调用该方法进行写操作时,会触发Outbound操作,此时是从当前handler向前寻找OutboundHandler
20231112212943

super.write() 是对 socketChannel.writeAndFlush(),这才是合理的,所以应该在 handler 中调用这个。

# 1.3 EmbeddedChannel

EmbeddedChannel 是一个用于调试的工具类,可以用于测试各个 handler。通过其构造函数按顺序传入需要测试 handler,然后调用对应的 Inbound 和 Outbound 方法即可。

public class TestEmbeddedChannel {
    public static void main(String[] args) {
        ChannelInboundHandlerAdapter h1 = new ChannelInboundHandlerAdapter() {
            @Override
            public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
                System.out.println("1");
                super.channelRead(ctx, msg);
            }
        };

        ChannelInboundHandlerAdapter h2 = new ChannelInboundHandlerAdapter() {
            @Override
            public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
                System.out.println("2");
                super.channelRead(ctx, msg);
            }
        };

        ChannelOutboundHandlerAdapter h3 = new ChannelOutboundHandlerAdapter() {
            @Override
            public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
                System.out.println("3");
                super.write(ctx, msg, promise);
            }
        };

        ChannelOutboundHandlerAdapter h4 = new ChannelOutboundHandlerAdapter() {
            @Override
            public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
                System.out.println("4");
                super.write(ctx, msg, promise);
            }
        };

        // 用于测试Handler的Channel
        EmbeddedChannel channel = new EmbeddedChannel(h1, h2, h3, h4);
        
        // 模拟入站操作,执行 Inbound 操作 
        channel.writeInbound(ByteBufAllocator.DEFAULT.buffer().writeBytes("hello".getBytes(StandardCharsets.UTF_8)));
        // 模拟出站操作,执行 Outbound 操作
        channel.writeOutbound(ByteBufAllocator.DEFAULT.buffer().writeBytes("hello".getBytes(StandardCharsets.UTF_8)));
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

# 2. ByteBuf

ByteBuf 是对 NIO 中的 ByteBuffer 的增强。

为了方便,先写一个调试工具方法,该方法可以帮助我们更为详细地查看 ByteBuf 中的内容:

private static void log(ByteBuf buffer) {
    int length = buffer.readableBytes();
    int rows = length / 16 + (length % 15 == 0 ? 0 : 1) + 4;
    StringBuilder buf = new StringBuilder(rows * 80 * 2)
        .append("read index:").append(buffer.readerIndex())
        .append(" write index:").append(buffer.writerIndex())
        .append(" capacity:").append(buffer.capacity())
        .append(NEWLINE);
    appendPrettyHexDump(buf, buffer);
    System.out.println(buf.toString());
}
1
2
3
4
5
6
7
8
9
10
11

# 2.1 ByteBuf 的创建

  • 使用 ByteBufAllocator.DEFAULT.buffer() 可以创建一个默认的 ByteBuf
public class ByteBufStudy {
    public static void main(String[] args) {
        // 创建ByteBuf
        ByteBuf buffer = ByteBufAllocator.DEFAULT.buffer(16);
        ByteBufUtil.log(buffer);

        // 向buffer中写入数据
        StringBuilder sb = new StringBuilder();
        for(int i = 0; i < 20; i++) {
            sb.append("a");
        }
        buffer.writeBytes(sb.toString().getBytes(StandardCharsets.UTF_8));

        // 查看写入结果
        ByteBufUtil.log(buffer);
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

ByteBuf 通过 ByteBufAllocator 选择 allocator 并调用对应的 buffer() 方法来创建的,默认使用直接内存作为 ByteBuf,容量为 256 个字节,可以指定初始容量的大小。

当 ByteBuf 的容量无法容纳所有数据时,ByteBuf 会进行自动扩容操作。

如果在 handler 中创建 ByteBuf,建议使用 ChannelHandlerContext ctx.alloc().buffer() 来创建。

# 2.2 直接内存 vs 堆内存

之前说过,堆内存的分配效率比较高,但读写效率比较低,而直接内存分配效率比较低,但读写效率比较高(因为 zero-copy)。

  • 创建池化基于堆内存的 ByteBuf:ByteBufAllocator.DEFAULT.heapBuffer(16);
  • 创建池化基于直接内存的 ByteBuf:yteBufAllocator.DEFAULT.directBuffer(16); 或 ByteBufAllocator.DEFAULT.buffer(16);

在选择时,需要考虑到:

  • 直接内存创建和销毁的代价昂贵,但读写性能高(少一次内存复制),适合配合池化功能一起用
  • 直接内存对 GC 压力小,因为这部分内存不受 JVM 垃圾回收的管理,但也要注意及时主动释放

# 2.3 池化 vs 非池化

这里的池化是指对分配的内存的池化,避免每次使用内存都是申请内存再释放内存。池化的最大意义在于可以重用 ByteBuf,优点有:

  • 没有池化,则每次都得创建新的 ByteBuf 实例,这个操作对直接内存代价昂贵,就算是堆内存,也会增加 GC 压力
  • 有了池化,则可以重用池中 ByteBuf 实例,并且采用了与 jemalloc 类似的内存分配算法提升分配效率
  • 高并发时,池化功能更节约内存,减少内存溢出的可能

池化功能是否开启,可以通过下面的系统环境变量来设置:

-Dio.netty.allocator.type={unpooled|pooled}
1
  • 4.1 以后,非 Android 平台默认启用池化实现,Android 平台启用非池化实现
  • 4.1 之前,池化功能还不成熟,默认是非池化实现

看一下例子:

public class ByteBufStudy {
    public static void main(String[] args) {
        ByteBuf buffer = ByteBufAllocator.DEFAULT.buffer(16);
        System.out.println(buffer.getClass());

        buffer = ByteBufAllocator.DEFAULT.heapBuffer(16);
        System.out.println(buffer.getClass());

        buffer = ByteBufAllocator.DEFAULT.directBuffer(16);
        System.out.println(buffer.getClass());
    }
}
1
2
3
4
5
6
7
8
9
10
11
12

打印结果:

// 使用池化的直接内存
class io.netty.buffer.PooledUnsafeDirectByteBuf
    
// 使用池化的堆内存    
class io.netty.buffer.PooledUnsafeHeapByteBuf
    
// 使用池化的直接内存    
class io.netty.buffer.PooledUnsafeDirectByteBuf
1
2
3
4
5
6
7
8

# 2.4 ByteBuf 的组成

ByteBuf 主要有以下几个组成部分:

20231118103203
  • 最大容量与当前容量
    • 在构造 ByteBuf 时,可传入两个参数,分别代表初始容量和最大容量,若未传入第二个参数(最大容量),最大容量默认为 Integer.MAX_VALUE
    • 当 ByteBuf 容量无法容纳所有数据时,会进行扩容操作,若超出最大容量,会抛出 java.lang.IndexOutOfBoundsException 异常
  • 读写操作不同于 ByteBuffer 只用 position 进行控制,ByteBuf 分别由读指针和写指针两个指针控制。进行读写操作时,无需进行模式的切换
    • 读指针前的部分被称为废弃部分,是已经读过的内容
    • 读指针与写指针之间的空间称为可读部分
    • 写指针与当前容量之间的空间称为可写部分

# 2.5 ByteBuf 的写入

常用方法:

方法签名 含义 备注
writeBoolean(boolean value) 写入 boolean 值 用一字节 01|00 代表 true|false
writeByte(int value) 写入 byte 值
writeShort(int value) 写入 short 值
writeInt(int value) 写入 int 值 Big Endian,即 0x250,写入后 00 00 02 50
writeIntLE(int value) 写入 int 值 Little Endian,即 0x250,写入后 50 02 00 00
writeLong(long value) 写入 long 值
writeChar(int value) 写入 char 值
writeFloat(float value) 写入 float 值
writeDouble(double value) 写入 double 值
writeBytes(ByteBuf src) 写入 netty 的 ByteBuf
writeBytes(byte[] src) 写入 byte[]
writeBytes(ByteBuffer src) 写入 nio 的 ByteBuffer
int writeCharSequence(CharSequence sequence, Charset charset) 写入字符串
  • 这些方法的未指明返回值的,其返回值都是 ByteBuf,意味着可以链式调用来写入不同的数据
  • 网络传输中,默认习惯是 Big Endian,使用 writeInt(int value)

# 2.6 扩容

当 ByteBuf 中的容量无法容纳写入的数据时,会进行扩容操作:

buffer.writeLong(7);
ByteBufUtil.log(buffer);
1
2

结果:

// 扩容前
read index:0 write index:12 capacity:16
...

// 扩容后
read index:0 write index:20 capacity:20
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 00 00 00 05 06 00 00 00 00 00 00 00 |................|
|00000010| 00 00 00 07                                     |....            |
+--------+-------------------------------------------------+----------------+
1
2
3
4
5
6
7
8
9
10
11
12

扩容规则:

  • 如何写入后数据大小未超过 512 字节,则选择下一个 16 的整数倍进行扩容
    • 例如写入后大小为 12 字节,则扩容后 capacity 是 16 字节
  • 如果写入后数据大小超过 512 字节,则选择下一个 2n
    • 例如写入后大小为 513 字节,则扩容后 capacity 是 210=1024 字节(29=512 已经不够了)
  • 扩容不能超过 maxCapacity,否则会抛出 java.lang.IndexOutOfBoundsException 异常

# 2.7 读取

读取主要是通过一系列 read 方法进行读取,读取时会根据读取数据的字节数移动读指针

如果需要重复读取,需要调用 buffer.markReaderIndex() 对读指针进行标记,并通过 buffer.resetReaderIndex() 将读指针恢复到 mark 标记的位置:

public class ByteBufStudy {
    public static void main(String[] args) {
        // 创建ByteBuf
        ByteBuf buffer = ByteBufAllocator.DEFAULT.buffer(16, 20);

        // 向buffer中写入数据
        buffer.writeBytes(new byte[]{1, 2, 3, 4});
        buffer.writeInt(5);

        // 读取4个字节
        System.out.println(buffer.readByte());
        System.out.println(buffer.readByte());
        System.out.println(buffer.readByte());
        System.out.println(buffer.readByte());
        ByteBufUtil.log(buffer);

        // 通过mark与reset实现重复读取
        buffer.markReaderIndex();
        System.out.println(buffer.readInt());
        ByteBufUtil.log(buffer);

        // 恢复到mark标记处
        buffer.resetReaderIndex();
        ByteBufUtil.log(buffer);
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

打印结果:

1
2
3
4
read index:4 write index:8 capacity:16
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 00 00 00 05                                     |....            |
+--------+-------------------------------------------------+----------------+
5
read index:8 write index:8 capacity:16

read index:4 write index:8 capacity:16
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 00 00 00 05                                     |....            |
+--------+-------------------------------------------------+----------------+
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

还有以 get 开头的一系列方法,这些方法不会改变读指针的位置

# 2.8 ByteBuf 的内存回收

由于 Netty 中有堆外内存(直接内存)的 ByteBuf 实现,堆外内存最好是手动来释放,而不是等 GC 垃圾回收。

  • UnpooledHeapByteBuf 使用的是 JVM 内存,只需等 GC 回收内存即可
  • UnpooledDirectByteBuf 使用的就是直接内存了,需要特殊的方法来回收内存
  • PooledByteBuf 和它的子类使用了池化机制,需要更复杂的规则来回收内存

Netty 这里采用了引用计数法来控制回收内存,每个 ByteBuf 都实现了 ReferenceCounted 接口:

  • 每个 ByteBuf 对象的初始计数为 1
  • 调用 release 方法计数减 1,如果计数为 0,ByteBuf 内存被回收
  • 调用 retain 方法计数加 1,表示调用者没用完之前,其它 handler 即使调用了 release 也不会造成回收
  • 当计数为 0 时,底层内存会被回收,这时即使 ByteBuf 对象还在,其各个方法均无法正常使用

# 2.8.1 释放规则

由于 handler pipeline 的存在,一般需要将 ByteBuf 传递给下一个 ChannelHandler,如果在每个 ChannelHandler 中都去调用 release ,就失去了传递性(如果在这个 ChannelHandler 内这个 ByteBuf 已完成了它的使命,那么便无须再传递)

基本规则是,哪个 handler 是最后使用者,哪个 handler 负责 release:

  • 起点,对于 NIO 实现来讲,在 io.netty.channel.nio.AbstractNioByteChannel.NioByteUnsafe.read 方法中首次创建 ByteBuf 放入 pipeline
  • 入站 ByteBuf 处理原则
    • 对原始 ByteBuf 不做处理,调用 ctx.fireChannelRead(msg) 向后传递,这时无须 release
    • 将原始 ByteBuf 转换为其它类型的 Java 对象,这时 ByteBuf 就没用了,必须 release
    • 如果不调用 ctx.fireChannelRead(msg) 向后传递,那么也必须 release
    • 注意各种异常,如果 ByteBuf 没有成功传递到下一个 ChannelHandler,必须 release
    • 假设消息一直向后传,那么 TailContext 会负责释放未处理消息(原始的 ByteBuf)
  • 出站 ByteBuf 处理原则
    • 出站消息最终都会转为 ByteBuf 输出,一直向前传,由 HeadContext flush 后 release
  • 异常处理原则
    • 有时候不清楚 ByteBuf 被引用了多少次,但又必须彻底释放,可以循环调用 release 直到返回 true
while (!buffer.release()) {}
1

当 ByteBuf 被传到了 pipeline 的 head 与 tail 时,ByteBuf 会被其中的方法彻底释放,但前提是 ByteBuf 被传递到了 head 与 tail 中。

# 2.8.2 TailConext 中释放 ByteBuf 的源码

protected void onUnhandledInboundMessage(Object msg) {
    try {
        logger.debug("Discarded inbound message {} that reached at the tail of the pipeline. Please check your pipeline configuration.", msg);
    } finally {
        // 具体的释放方法
        ReferenceCountUtil.release(msg);
    }
}
1
2
3
4
5
6
7
8

判断传过来的是否为 ByteBuf,是的话才需要释放:

public static boolean release(Object msg) {
    return msg instanceof ReferenceCounted ? ((ReferenceCounted)msg).release() : false;
}
1
2
3

# 2.9 切片(Slice)

切片操作:ByteBuf slice1 = buffer.slice(0, 5);

ByteBuf 的切片是零拷贝的体现之一。对原始 ByteBuf 进行切片成多个 ByteBuf,切片后的 ByteBuf 并没有发生内存复制,还是使用原始 ByteBuf 的内存,切片后的 ByteBuf 维护独立的 read、write 指针。

这里的“零拷贝”说的是从减少数据复制的角度来说的,并不是说的操作系统的零拷贝。

20231118140255

修改原 ByteBuf 中的值,也会影响切片后得到的 ByteBuf。

得到分片后的 buffer 后,要调用其 retain 方法,使其内部的引用计数加一。避免原 ByteBuf 释放,导致切片 buffer 无法使用

一个使用示例:

public class TestSlice {
    public static void main(String[] args) {
        // 创建ByteBuf
        ByteBuf buffer = ByteBufAllocator.DEFAULT.buffer(16, 20);

        // 向buffer中写入数据
        buffer.writeBytes(new byte[]{1, 2, 3, 4, 5, 6, 7, 8, 9, 10});

        // 将buffer分成两部分
        ByteBuf slice1 = buffer.slice(0, 5);
        ByteBuf slice2 = buffer.slice(5, 5);

        // 需要让分片的buffer引用计数加一
        // 避免原Buffer释放导致分片buffer无法使用
        slice1.retain();
        slice2.retain();
        
        ByteBufUtil.log(slice1);
        ByteBufUtil.log(slice2);

        // 更改原始buffer中的值
        System.out.println("===========修改原buffer中的值===========");
        buffer.setByte(0,5);

        System.out.println("===========打印slice1===========");
        ByteBufUtil.log(slice1);
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

注意:

  • 切片后的 ByteBuf 在底层上是复用的原有内存区间,切片后的 max capacity 被固定为这个区间的大小,因此不能做追加 write。

# 2.10 duplicate

也是【零拷贝】的体现之一,就好比截取了原始 ByteBuf 所有内容,并且没有 max capacity 的限制,也是与原始 ByteBuf 使用同一块底层内存,只是读写指针是独立的。

20231118145053

# 2.11 copy

会将底层内存数据进行深拷贝,因此无论读写,都与原始 ByteBuf 无关

# 2.12 CompositeByteBuf

【零拷贝】的体现之一,可以将多个 ByteBuf 合并为一个逻辑上的 ByteBuf,避免拷贝。

示例:








 



// buf1
ByteBuf buf1 = ByteBufAllocator.DEFAULT.buffer(5);
buf1.writeBytes(new byte[]{1, 2, 3, 4, 5});
// buf2
ByteBuf buf2 = ByteBufAllocator.DEFAULT.buffer(5);
buf2.writeBytes(new byte[]{6, 7, 8, 9, 10});
// composite
CompositeByteBuf buf3 = ByteBufAllocator.DEFAULT.compositeBuffer();
// true 表示增加新的 ByteBuf 自动递增 write index, 否则 write index 会始终为 0
buf3.addComponents(true, buf1, buf2);
1
2
3
4
5
6
7
8
9
10

CompositeByteBuf 是一个组合的 ByteBuf,它内部维护了一个 Component 数组,每个 Component 管理一个 ByteBuf,记录了这个 ByteBuf 相对于整体偏移量等信息,代表着整体中某一段的数据。

  • 优点,对外是一个虚拟视图,组合这些 ByteBuf 不会产生内存复制
  • 缺点,复杂了很多,多次操作会带来性能的损耗

# 2.13 Unpooled

Unpooled 是一个工具类,类如其名,提供了非池化的 ByteBuf 创建、组合、复制等操作

这里仅介绍其跟【零拷贝】相关的 wrappedBuffer 方法,可以用来包装 ByteBuf:

ByteBuf buf1 = ByteBufAllocator.DEFAULT.buffer(5);
buf1.writeBytes(new byte[]{1, 2, 3, 4, 5});
ByteBuf buf2 = ByteBufAllocator.DEFAULT.buffer(5);
buf2.writeBytes(new byte[]{6, 7, 8, 9, 10});

// 当包装 ByteBuf 个数超过一个时, 底层使用了 CompositeByteBuf
ByteBuf buf3 = Unpooled.wrappedBuffer(buf1, buf2);
System.out.println(ByteBufUtil.prettyHexDump(buf3));
1
2
3
4
5
6
7
8

也可以用来包装普通字节数组,底层也不会有拷贝操作:

ByteBuf buf4 = Unpooled.wrappedBuffer(new byte[]{1, 2, 3}, new byte[]{4, 5, 6});
System.out.println(buf4.getClass());
System.out.println(ByteBufUtil.prettyHexDump(buf4));
1
2
3

# 2.14 💡 ByteBuf 优势总结

  • 池化 - 可以重用池中 ByteBuf 实例,更节约内存,减少内存溢出的可能
  • 读写指针分离,不需要像 ByteBuffer 一样切换读写模式
  • 可以自动扩容
  • 支持链式调用,使用更流畅
  • 很多地方体现零拷贝,例如 slice、duplicate、CompositeByteBuf

# 3. 双向通信

# 3.1 一个关于读和写的误解

我最初在认识上有这样的误区,认为只有在 netty,nio 这样的多路复用 IO 模型时,读写才不会相互阻塞,才可以实现高效的双向通信,但实际上,Java Socket 是全双工的:在任意时刻,线路上存在A 到 B 和 B 到 A 的双向信号传输。即使是阻塞 IO,读和写是可以同时进行的,只要分别采用读线程和写线程即可,读不会阻塞写、写也不会阻塞读。

# 3.2 练习:echo server

编写 server:

new ServerBootstrap()
    .group(new NioEventLoopGroup())
    .channel(NioServerSocketChannel.class)
    .childHandler(new ChannelInitializer<NioSocketChannel>() {
        @Override
        protected void initChannel(NioSocketChannel ch) {
            ch.pipeline().addLast(new ChannelInboundHandlerAdapter(){
                @Override
                public void channelRead(ChannelHandlerContext ctx, Object msg) {
                    ByteBuf buffer = (ByteBuf) msg;
                    System.out.println(buffer.toString(Charset.defaultCharset()));

                    // 建议使用 ctx.alloc() 创建 ByteBuf
                    ByteBuf response = ctx.alloc().buffer();
                    response.writeBytes(buffer);
                    ctx.writeAndFlush(response);

                    // 思考:需要释放 buffer 吗
                    // 思考:需要释放 response 吗
                }
            });
        }
    }).bind(8080);
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

编写 client:

NioEventLoopGroup group = new NioEventLoopGroup();
Channel channel = new Bootstrap()
    .group(group)
    .channel(NioSocketChannel.class)
    .handler(new ChannelInitializer<NioSocketChannel>() {
        @Override
        protected void initChannel(NioSocketChannel ch) throws Exception {
            ch.pipeline().addLast(new StringEncoder());
            ch.pipeline().addLast(new ChannelInboundHandlerAdapter() {
                @Override
                public void channelRead(ChannelHandlerContext ctx, Object msg) {
                    ByteBuf buffer = (ByteBuf) msg;
                    System.out.println(buffer.toString(Charset.defaultCharset()));

                    // 思考:需要释放 buffer 吗
                }
            });
        }
    }).connect("127.0.0.1", 8080).sync().channel();

channel.closeFuture().addListener(future -> {
    group.shutdownGracefully();
});

new Thread(() -> {
    Scanner scanner = new Scanner(System.in);
    while (true) {
        String line = scanner.nextLine();
        if ("q".equals(line)) {
            channel.close();
            break;
        }
        channel.writeAndFlush(line);
    }
}).start();
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
编辑 (opens new window)
上次更新: 2023/11/18, 07:24:51
基本组件:EventLoop、Channel、Future 与 Promise
应用一:粘包与半包问题

← 基本组件:EventLoop、Channel、Future 与 Promise 应用一:粘包与半包问题→

最近更新
01
Deep Reinforcement Learning
10-03
02
误删数据后怎么办
04-06
03
MySQL 一主多从
03-22
更多文章>
Theme by Vdoing | Copyright © 2021-2024 yubincloud | MIT License
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式
×