count 计数与 order by 排序
参考:
# 1. count(*) 这么慢,我该怎么办?
系统中的统计部分经常需要 select count(*) from t
,但你会发现,随着系统中记录数越来越多,这条语句执行得也会越来越慢。
这一章主要聊一下 count(*)
到底是怎样实现的,以及 MySQL 为什么会这样实现。然后,我会再和你说说,如果应用中有这种频繁变更并需要统计表行数的需求,业务设计上可以怎么做。
# 1.1 count(*)
的实现方式
在不同的 MySQL 引擎中,count(*) 有不同的实现方式:
- MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行
count(*)
的时候会直接返回这个数,效率很高; - 而 InnoDB 引擎就麻烦了,它执行
count(*)
的时候,需要把数据一行一行地从引擎里面读出来,然后累积计数。
这里需要注意的是,我们在这篇文章里讨论的是没有过滤条件的
count(*)
,如果加了 where 条件的话,MyISAM 表也是不能返回得这么快的。
在前面,我们已经知道,InnoDB 无论在事务支持、并发能力还是数据安全方面,都是优于 MyISAM,所以我们也往往选择它,这也就是当我们的记录数越来越多的时候,计算一个表的总行数会越来越慢的原因。
那为什么 InnoDB 不跟 MyISAM 一样,也把 count 结果存起来呢?这是因为即使是在同一个时刻的多个查询,由于多版本并发控制(MVCC)的原因,InnoDB 表“应该返回多少行”也是不确定的。这里,我用一个算 count(*)
的例子来为你解释一下。
假设表 t 中现在有 10000 条记录,我们设计了三个用户并行的会话:
- 会话 A 先启动事务并查询一次表的总行数;
- 会话 B 启动事务,插入一行后记录后,查询表的总行数;
- 会话 C 先启动一个单独的语句,插入一行记录后,查询表的总行数。
我们假设从上到下是按照时间顺序执行的,同一行语句是在同一时刻执行的:
你会看到,在最后一个时刻,三个会话 A、B、C 会同时查询表 t 的总行数,但拿到的结果却不同。这和 InnoDB 的事务设计有关系,可重复读是它默认的隔离级别,在代码上就是通过多版本并发控制,也就是 MVCC 来实现的。每一行记录都要判断自己是否对这个会话可见,因此对于 count(*) 请求来说,InnoDB 只好把数据一行一行地读出依次判断,可见的行才能够用于计算“基于这个查询”的表的总行数。
当然,现在这个看上去笨笨的 MySQL,在执行 count(*)
操作的时候还是做了优化的。你知道的,InnoDB 是索引组织表,主键索引树的叶子节点是数据,而普通索引树的叶子节点是主键值。所以,普通索引树比主键索引树小很多。对于 count(*)
这样的操作,遍历哪个索引树得到的结果逻辑上都是一样的。因此,MySQL 优化器会找到最小的那棵树来遍历。在保证逻辑正确的前提下,尽量减少扫描的数据量,是数据库系统设计的通用法则之一。
如果你用过 show table status 命令的话,就会发现这个命令的输出结果里面也有一个 TABLE_ROWS 用于显示这个表当前有多少行,这个命令执行挺快的,那这个 TABLE_ROWS 能代替 count(*)
吗?
答案是不能。之前我们知道,索引统计的值是通过采样来估算的,这里的 TABLE_ROWS 也是从这个采样估算得来的,因此它很不准,官方文档说误差可能达到 40% 到 50%。所以,show table status 命令显示的行数也不能直接使用。
到这里我们小结一下:
- MyISAM 表虽然
count(*)
很快,但是不支持事务; - show table status 命令虽然返回很快,但是不准确;
- InnoDB 表直接
count(*)
会遍历全表,虽然结果准确,但会导致性能问题。
那么,回到文章开头的问题,如果你现在有一个页面经常要显示交易系统的操作记录总数,到底应该怎么办呢?答案是,我们只能自己计数。接下来,我们讨论一下,看看自己计数有哪些方法,以及每种方法的优缺点有哪些。
这里,我先和你说一下这些方法的基本思路:你需要自己找一个地方,把操作记录表的行数存起来。
# 1.2 用缓存系统来保存计数
对于更新很频繁的库来说,你可能会第一时间想到,用缓存系统来支持,这样读和更新都很快。
但这缓存系统可能会丢失更新,比如由于 Redis 异常重启,导致原本要存储到 Redis 的更新被丢掉了。当然这也有解决办法:Redis 重启后就再执行一次 count(*)
写回到 Redis 中,异常重启毕竟不是经常出现的情况,这样的代价还是可以接受的。
但实际上,将计数保存在缓存系统中的方式,还不只是丢失更新的问题。即使 Redis 正常工作,这个值还是逻辑上不精确的。因此在并发情况下,执行顺序的问题可能会出现 Redis 与 MySQL 的数据不一致的问题,我们无法精确控制不同线程的执行时刻,所以即使 Redis 正常工作,这个计数值还是逻辑上不精确的。
# 1.3 在数据库保存计数
根据上一节的分析,用缓存系统来保存 count 有更新丢失和计数不精确的问题,那如果我们把这个计数直接放到数据库里单独的一张计数表 C 中,又会怎么样呢?
- 首先,这解决了崩溃丢失的问题,InnoDB 是支持崩溃恢复不丢数据的。
- 然后,借助于事务机制,也可以保证计数值逻辑一致。
# 1.4 不同的 count 用法
在 select count(?) from t
这样的查询语句里面,count(*)
、count(主键 id)
、count(字段)
和 count(1)
等不同用法的性能,有哪些差别?
这里还是基于 InnoDB 引擎来讨论。
首先你要弄清楚 count() 的语义。count() 是一个聚合函数,对于返回的结果集,一行行地判断,如果 count 函数的参数不是 NULL,累计值就加 1,否则不加。最后返回累计值。
所以,count(*)、count(主键 id) 和 count(1) 都表示返回满足条件的结果集的总行数;而 count(字段)
,则表示返回满足条件的数据行里面,参数“字段”不为 NULL 的总个数。
至于分析性能差别的时候,你可以记住这么几个原则:
- server 层要什么就给什么;
- InnoDB 只给必要的值;
- 现在的优化器只优化了 count(*) 的语义为“取行数”,其他“显而易见”的优化并没有做。
这是什么意思呢?接下来,我们就一个个地来看看。
对于 count(主键 id) 来说,InnoDB 引擎会遍历整张表,把每一行的 id 值都取出来,返回给 server 层。server 层拿到 id 后,判断是不可能为空的,就按行累加。
对于 count(1) 来说,InnoDB 引擎遍历整张表,但不取值。server 层对于返回的每一行,放一个数字“1”进去,判断是不可能为空的,按行累加。
单看这两个用法的差别的话,你能对比出来,count(1) 执行得要比 count(主键 id) 快。因为从引擎返回 id 会涉及到解析数据行,以及拷贝字段值的操作。
对于 count(字段) 来说:
- 如果这个“字段”是定义为 not null 的话,一行行地从记录里面读出这个字段,判断不能为 null,按行累加;
- 如果这个“字段”定义允许为 null,那么执行的时候,判断到有可能是 null,还要把值取出来再判断一下,不是 null 才累加。
也就是前面的第一条原则,server 层要什么字段,InnoDB 就返回什么字段。
但是 count(*)
是例外,并不会把全部字段取出来,而是专门做了优化,不取值。count(*)
肯定不是 null,按行累加。
看到这里,你一定会说,优化器就不能自己判断一下吗,主键 id 肯定非空啊,为什么不能按照 count(*)
来处理,多么简单的优化啊。当然,MySQL 专门针对这个语句进行优化,也不是不可以。但是这种需要专门优化的情况太多了,而且 MySQL 已经优化过 count(*)
了,你直接使用这种用法就可以了。
所以结论是:按照效率排序的话,count(字段)
< count(主键id)
< count(1)
≈ count(*)
。所以,建议尽量使用 count(*)
。
# 2. “order by”是怎么工作的?
在你开发应用的时候,一定会经常碰到需要根据指定的字段排序来显示结果的需求。还是以我们前面举例用过的市民表为例,假设你要查询城市是“杭州”的所有人名字,并且按照姓名排序返回前 1000 个人的姓名、年龄。
假设这个表的部分定义是这样的:
CREATE TABLE `t` (
`id` int(11) NOT NULL,
`city` varchar(16) NOT NULL,
`name` varchar(16) NOT NULL,
`age` int(11) NOT NULL,
`addr` varchar(128) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `city` (`city`)
) ENGINE=InnoDB;
2
3
4
5
6
7
8
9
这时,你的 SQL 语句可以这么写:
select city, name, age
from t
where city='杭州'
order by name
limit 1000;
2
3
4
5
这个语句看上去逻辑很清晰,但是你了解它的执行流程吗?今天,我就和你聊聊这个语句是怎么执行的,以及有什么参数会影响执行的行为。
# 2.1 全字段排序
为避免全表扫描,我们会在 city 字段上加上索引,之后我们用 explain 命令看一下这个语句的执行情况:
Extra 这个字段中的“Using filesort”表示的就是需要排序,MySQL 会给每个线程分配一块内存用于排序,称为 sort_buffer。
为了说明这个 SQL 查询语句的执行过程,我们先来看一下 city 这个索引的示意图:
从图中可以看到,满足 city='杭州’
条件的行,是从 ID_X 到 ID_(X+N) 的这些记录。通常情况下,这个语句执行流程如下所示:
- 初始化 sort_buffer,确定放入 name、city、age 这三个字段;
- 从索引 city 找到第一个满足 city='杭州’条件的主键 id,也就是图中的 ID_X;
- 到主键 id 索引取出整行,取 name、city、age 三个字段的值,存入 sort_buffer 中;
- 从索引 city 取下一个记录的主键 id;
- 重复步骤 3、4 直到 city 的值不满足查询条件为止,对应的主键 id 也就是图中的 ID_Y;
- 对 sort_buffer 中的数据按照字段 name 做快速排序;按照排序结果取前 1000 行返回给客户端。
我们暂且把这个排序过程,称为全字段排序,执行流程的示意图如下所示,下一篇文章中我们还会用到这个排序。
# 使用临时文件来排序
图中“按 name 排序”这个动作,可能在内存中完成,也可能需要使用外部排序,这取决于排序所需的内存和参数 sort_buffer_size。它会尽量在内存中排序,若内存中放不下,则可以利用磁盘进行辅助排序。
你可以用下面介绍的方法,来确定一个排序语句是否使用了临时文件:
/* 打开optimizer_trace,只对本线程有效 */
SET optimizer_trace='enabled=on';
/* @a保存Innodb_rows_read的初始值 */
select VARIABLE_VALUE into @a from performance_schema.session_status where variable_name = 'Innodb_rows_read';
/* 执行语句 */
select city, name,age from t where city='杭州' order by name limit 1000;
/* 查看 OPTIMIZER_TRACE 输出 */
SELECT * FROM `information_schema`.`OPTIMIZER_TRACE`\G
/* @b保存Innodb_rows_read的当前值 */
select VARIABLE_VALUE into @b from performance_schema.session_status where variable_name = 'Innodb_rows_read';
/* 计算Innodb_rows_read差值 */
select @b-@a;
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
这个方法是通过查看 OPTIMIZER_TRACE 的结果来确认的,你可以从 number_of_tmp_files 中看到是否使用了临时文件:
number_of_tmp_files 表示的是,排序过程中使用的临时文件数。你一定奇怪,为什么需要 12 个文件?内存放不下时,就需要使用外部排序,外部排序一般使用归并排序算法。可以这么简单理解,MySQL 将需要排序的数据分成 12 份,每一份单独排序后存在这些临时文件中。然后把这 12 个有序文件再合并成一个有序的大文件。如果 sort_buffer_size 超过了需要排序的数据量的大小,number_of_tmp_files 就是 0,表示排序可以直接在内存中完成。
接下来,我再和你解释一下图 5 中其他两个值的意思。
我们的示例表中有 4000 条满足 city='杭州’的记录,所以你可以看到 examined_rows=4000,表示参与排序的行数是 4000 行。
sort_mode 里面的 packed_additional_fields 的意思是,排序过程对字符串做了“紧凑”处理。即使 name 字段的定义是 varchar(16),在排序过程中还是要按照实际长度来分配空间的。
同时,最后一个查询语句 select @b-@a 的返回结果是 4000,表示整个执行过程只扫描了 4000 行。这里需要注意的是,为了避免对结论造成干扰,我把 internal_tmp_disk_storage_engine 设置成 MyISAM。否则,select @b-@a 的结果会显示为 4001。这是因为查询 OPTIMIZER_TRACE 这个表时,需要用到临时表,而 internal_tmp_disk_storage_engine 的默认值是 InnoDB。如果使用的是 InnoDB 引擎的话,把数据从临时表取出来的时候,会让 Innodb_rows_read 的值加 1。
# 2.2 rowid 排序
在上面这个算法过程里面,只对原表的数据读了一遍,剩下的操作都是在 sort_buffer 和临时文件中执行的。但这个算法有一个问题,就是如果查询要返回的字段很多的话,那么 sort_buffer 里面要放的字段数太多,这样内存里能够同时放下的行数很少,要分成很多个临时文件,排序的性能会很差。所以如果单行很大,全排序的方法效率不够好。
那么,如果 MySQL 认为排序的单行长度太大会怎么做呢?
我们先来改一个参数 max_length_for_sort_data
,它是 MySQL 中专门控制用于排序的行数据的长度的一个参数。它的意思是,如果单行的长度超过这个值,MySQL 就认为单行太大,要换一个算法:
SET max_length_for_sort_data = 16;
city、name、age 这三个字段的定义总长度是 36,我把 max_length_for_sort_data 设置为 16,我们再来看看计算过程有什么改变。
新的算法放入 sort_buffer 的字段,只有要排序的列(即 name 字段)和主键 id。但这时,排序的结果就因为少了 city 和 age 字段的值,不能直接返回了,整个执行流程就变成如下所示的样子:
- 初始化 sort_buffer,确定放入两个字段,即 name 和 id;
- 从索引 city 找到第一个满足 city='杭州’条件的主键 id,也就是图中的 ID_X;
- 到主键 id 索引取出整行,取 name、id 这两个字段,存入 sort_buffer 中;
- 从索引 city 取下一个记录的主键 id;
- 重复步骤 3、4 直到不满足 city='杭州’条件为止,也就是图中的 ID_Y;
- 对 sort_buffer 中的数据按照字段 name 进行排序;
- 遍历排序结果,取前 1000 行,并按照 id 的值回到原表中取出 city、name 和 age 三个字段返回给客户端。
这个执行流程的示意图如下,我把它称为 rowid 排序:
rowid 排序
这种排序方式就是说,先把 order-by 的字段和 id 字段取出来放入 buffer 中,然后按照 order-by 进行排序,将排序结果的 id 再从主键 tree 中取出 select 的结果。
对比全字段排序流程图你会发现,rowid 排序多访问了一次表 t 的主键索引,就是步骤 7。
需要说明的是,最后的“结果集”是一个逻辑概念,实际上 MySQL 服务端从排序后的 sort_buffer 中依次取出 id,然后到原表查到 city、name 和 age 这三个字段的结果,不需要在服务端再耗费内存存储结果,是直接返回给客户端的。
根据这个说明过程和图示,你可以想一下,这个时候执行 select @b-@a,结果会是多少呢?现在,我们就来看看结果有什么不同。
首先,图中的 examined_rows 的值还是 4000,表示用于排序的数据是 4000 行。但是 select @b-@a 这个语句的值变成 5000 了。因为这时候除了排序过程外,在排序完成后,还要根据 id 去原表取值。由于语句是 limit 1000,因此会多读 1000 行。
从 OPTIMIZER_TRACE 的结果中,你还能看到另外两个信息也变了:
- sort_mode 变成了 ,表示参与排序的只有 name 和 id 这两个字段。
- number_of_tmp_files 变成 10 了,是因为这时候参与排序的行数虽然仍然是 4000 行,但是每一行都变小了,因此需要排序的总数据量就变小了,需要的临时文件也相应地变少了。
# 2.3 全字段排序 VS rowid 排序
我们对比一下这两种排序:
- 如果 MySQL 实在是担心排序内存太小,会影响排序效率,才会采用 rowid 排序算法,这样排序过程中一次可以排序更多行,但是需要再回到原表去取数据。
- 如果 MySQL 认为内存足够大,会优先选择全字段排序,把需要的字段都放到 sort_buffer 中,这样排序后就会直接从内存里面返回查询结果了,不用再回到原表去取数据。
这也就体现了 MySQL 的一个设计思想:如果内存够,就要多利用内存,尽量减少磁盘访问。
对于 InnoDB 表来说,rowid 排序会要求回表多造成磁盘读,因此不会被优先选择。这个结论看上去有点废话的感觉,但是你要记住它,下一篇文章我们就会用到。
看到这里,你就了解了,MySQL 做排序是一个成本比较高的操作。那么你会问,是不是所有的 order by 都需要排序操作呢?如果不排序就能得到正确的结果,那对系统的消耗会小很多,语句的执行时间也会变得更短。
其实,并不是所有的 order by 语句,都需要排序操作的。从上面分析的执行过程,我们可以看到,MySQL 之所以需要生成临时表,并且在临时表上做排序操作,其原因是原来的数据都是无序的。如果原生得到的行数据就是递增排序的,就不用再需要排序了。
所以,我们可以在这个市民表上创建一个 city 和 name 的联合索引,对应的 SQL 语句是:
alter table t add index city_user(city, name);
作为与 city 索引的对比,我们来看看这个索引的示意图:
在这个索引里面,我们依然可以用树搜索的方式定位到第一个满足 city='杭州’的记录,并且额外确保了,接下来按顺序取“下一条记录”的遍历过程中,只要 city 的值是杭州,name 的值就一定是有序的。
这样整个查询过程的流程就变成了:
- 从索引 (city,name) 找到第一个满足 city='杭州’条件的主键 id;
- 到主键 id 索引取出整行,取 name、city、age 三个字段的值,作为结果集的一部分直接返回;
- 从索引 (city,name) 取下一个记录主键 id;
- 重复步骤 2、3,直到查到第 1000 条记录,或者是不满足 city='杭州’条件时循环结束。
可以看到,这个查询过程不需要临时表,也不需要排序。接下来,我们用 explain 的结果来印证一下:
从图中可以看到,Extra 字段中没有 Using filesort 了,也就是不需要排序了。而且由于 (city,name) 这个联合索引本身有序,所以这个查询也不用把 4000 行全都读一遍,只要找到满足条件的前 1000 条记录就可以退出了。也就是说,在我们这个例子里,只需要扫描 1000 次。
既然说到这里了,我们再往前讨论,这个语句的执行流程有没有可能进一步简化呢?也许你还记得覆盖索引。覆盖索引是指,索引上的信息足够满足查询请求,不需要再回到主键索引上去取数据。
按照覆盖索引的概念,我们可以再优化一下这个查询语句的执行流程。
针对这个查询,我们可以创建一个 city、name 和 age 的联合索引,对应的 SQL 语句就是:
alter table t add index city_user_age(city, name, age);
这时,对于 city 字段的值相同的行来说,还是按照 name 字段的值递增排序的,此时的查询语句也就不再需要排序了。这样整个查询语句的执行流程就变成了:
- 从索引 (city,name,age) 找到第一个满足 city='杭州’条件的记录,取出其中的 city、name 和 age 这三个字段的值,作为结果集的一部分直接返回;
- 从索引 (city,name,age) 取下一个记录,同样取出这三个字段的值,作为结果集的一部分直接返回;
- 重复执行步骤 2,直到查到第 1000 条记录,或者是不满足 city='杭州’条件时循环结束。
然后,我们再来看看 explain 的结果:
可以看到,Extra 字段里面多了“Using index”,表示的就是使用了覆盖索引,性能上会快很多。
当然,这里并不是说要为了每个查询能用上覆盖索引,就要把语句中涉及的字段都建上联合索引,毕竟索引还是有维护代价的。这是一个需要权衡的决定。
# 2.4 小结
这一章介绍了 MySQL 里面 order by 语句的几种算法流程。
在开发系统的时候,你总是不可避免地会使用到 order by 语句。你心里要清楚每个语句的排序逻辑是怎么实现的,还要能够分析出在最坏情况下,每个语句的执行对系统资源的消耗,这样才能做到下笔如有神,不犯低级错误。
# 3. 如何正确地显示随机消息?
这一大节主要说一下 MySQL 中的一种排序需求:随机显示消息。
有一个英语 APP 的首页有一个随机显示单词的功能,也就是根据每个用户的级别有一个单词表,然后这个用户每次访问首页的时候,都会随机滚动显示三个单词。他们发现随着单词表变大,选单词这个逻辑变得越来越慢,甚至影响到了首页的打开速度。
现在,如果让你来设计这个 SQL 语句,你会怎么写呢?
为了便于理解,我对这个例子进行了简化:去掉每个级别的用户都有一个对应的单词表这个逻辑,直接就是从一个单词表中随机选出三个单词。这个表的建表语句和初始数据的命令如下:
mysql> CREATE TABLE `words` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`word` varchar(64) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB;
delimiter ;;
create procedure idata()
begin
declare i int;
set i=0;
while i<10000 do
insert into words(word) values(concat(char(97+(i div 1000)), char(97+(i % 1000 div 100)), char(97+(i % 100 div 10)), char(97+(i % 10))));
set i=i+1;
end while;
end;;
delimiter ;
call idata();
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
为了便于量化说明,我在这个表里面插入了 10000 行记录。接下来,我们就一起看看要随机选择 3 个单词,有什么方法实现,存在什么问题以及如何改进。
# 3.1 内存临时表
首先,你会想到用 order by rand() 来实现这个逻辑:
select word from words order by rand() limit 3;
这个语句的意思很直白,随机排序取前 3 个。虽然这个 SQL 语句写法很简单,但执行流程却有点复杂的。我们先用 explain 命令来看看这个语句的执行情况:
Extra 字段显示 Using temporary,表示的是需要使用临时表;Using filesort,表示的是需要执行排序操作。因此这里的 Extra 的意思就是说,这个过程需要临时表,并且需要在临时表上排序。
上一章讲了全字段排序和 rowid 排序,那么问你一个问题:你觉得对于临时内存表的排序来说,它会选择哪一种算法呢?回顾一下上一篇文章的一个结论:对于 InnoDB 表来说,执行全字段排序会减少磁盘访问,因此会被优先选择。
我强调了“InnoDB 表”,你肯定想到了,对于内存表,回表过程只是简单地根据数据行的位置,直接访问内存得到数据,根本不会导致多访问磁盘。优化器没有了这一层顾虑,那么它会优先考虑的,就是用于排序的行越小越好了,所以,MySQL 这时就会选择 rowid 排序。
理解了这个算法选择的逻辑,我们再来看看语句的执行流程。同时,通过今天的这个例子,我们来尝试分析一下语句的扫描行数。这条语句的执行流程是这样的:
- 创建一个临时表。这个临时表使用的是 memory 引擎,表里有两个字段,第一个字段是 double 类型,为了后面描述方便,记为字段 R,第二个字段是 varchar(64) 类型,记为字段 W。并且,这个表没有建索引。
- 从 words 表中,按主键顺序取出所有的 word 值。对于每一个 word 值,调用 rand() 函数生成一个大于 0 小于 1 的随机小数,并把这个随机小数和 word 分别存入临时表的 R 和 W 字段中,到此,扫描行数是 10000。
- 现在临时表有 10000 行数据了,接下来你要在这个没有索引的内存临时表上,按照字段 R 排序。
- 初始化 sort_buffer。sort_buffer 中有两个字段,一个是 double 类型,另一个是整型。
- 从内存临时表中一行一行地取出 R 值和位置信息(我后面会和你解释这里为什么是“位置信息”),分别存入 sort_buffer 中的两个字段里。这个过程要对内存临时表做全表扫描,此时扫描行数增加 10000,变成了 20000。
- 在 sort_buffer 中根据 R 的值进行排序。注意,这个过程没有涉及到表操作,所以不会增加扫描行数。
- 排序完成后,取出前三个结果的位置信息,依次到内存临时表中取出 word 值,返回给客户端。这个过程中,访问了表的三行数据,总扫描行数变成了 20003。
接下来,我们通过慢查询日志(slow log)来验证一下我们分析得到的扫描行数是否正确:
# Query_time: 0.900376 Lock_time: 0.000347 Rows_sent: 3 Rows_examined: 20003
SET timestamp=1541402277;
select word from words order by rand() limit 3;
2
3
其中,Rows_examined:20003 就表示这个语句执行过程中扫描了 20003 行,也就验证了我们分析得出的结论。
这里插一句题外话,在平时学习概念的过程中,你可以经常这样做,先通过原理分析算出扫描行数,然后再通过查看慢查询日志,来验证自己的结论。我自己就是经常这么做,这个过程很有趣,分析对了开心,分析错了但是弄清楚了也很开心。
现在,我来把完整的排序执行流程图画出来:
图中的 pos 就是位置信息,你可能会觉得奇怪,这里的“位置信息”是个什么概念?在上一篇文章中,我们对 InnoDB 表排序的时候,明明用的还是 ID 字段。
这时候,我们就要回到一个基本概念:MySQL 的表是用什么方法来定位“一行数据”的。前面介绍索引时有人提问过,如果把一个 InnoDB 表的主键删掉,是不是就没有主键,就没办法回表了呢?
其实不是的。如果你创建的表没有主键,或者把一个表的主键删掉了,那么 InnoDB 会自己生成一个长度为 6 字节的 rowid 来作为主键。这也就是排序模式里面,rowid 名字的来历。实际上它表示的是:每个引擎用来唯一标识数据行的信息:
- 对于有主键的 InnoDB 表来说,这个 rowid 就是主键 ID;
- 对于没有主键的 InnoDB 表来说,这个 rowid 就是由系统生成的;
- MEMORY 引擎不是索引组织表。在这个例子里面,你可以认为它就是一个数组。因此,这个 rowid 其实就是数组的下标。
到这里,我来稍微小结一下:order by rand() 使用了内存临时表,内存临时表排序的时候使用了 rowid 排序方法。
# 3.2 磁盘临时表
那么,是不是所有的临时表都是内存表呢?其实不是的。tmp_table_size 这个配置限制了内存临时表的大小,默认值是 16M。如果临时表大小超过了 tmp_table_size,那么内存临时表就会转成磁盘临时表。
磁盘临时表使用的引擎默认是 InnoDB,是由参数 internal_tmp_disk_storage_engine 控制的。
当使用磁盘临时表的时候,对应的就是一个没有显式索引的 InnoDB 表的排序过程。为了复现这个过程,我把 tmp_table_size 设置成 1024,把 sort_buffer_size 设置成 32768, 把 max_length_for_sort_data 设置成 16:
set tmp_table_size=1024;
set sort_buffer_size=32768;
set max_length_for_sort_data=16;
/* 打开 optimizer_trace,只对本线程有效 */
SET optimizer_trace='enabled=on';
/* 执行语句 */
select word from words order by rand() limit 3;
/* 查看 OPTIMIZER_TRACE 输出 */
SELECT * FROM `information_schema`.`OPTIMIZER_TRACE`\G
2
3
4
5
6
7
8
9
10
11
然后,我们来看一下这次 OPTIMIZER_TRACE 的结果:
因为将 max_length_for_sort_data 设置成 16,小于 word 字段的长度定义,所以我们看到 sort_mode 里面显示的是 rowid 排序,这个是符合预期的,参与排序的是随机值 R 字段和 rowid 字段组成的行。
这时候你可能心算了一下,发现不对。R 字段存放的随机值就 8 个字节,rowid 是 6 个字节(至于为什么是 6 字节,就留给你课后思考吧),数据总行数是 10000,这样算出来就有 140000 字节,超过了 sort_buffer_size 定义的 32768 字节了。但是,number_of_tmp_files 的值居然是 0,难道不需要用临时文件吗?
这个 SQL 语句的排序确实没有用到临时文件,采用是 MySQL 5.6 版本引入的一个新的排序算法,即:优先队列排序算法。接下来,我们就看看为什么没有使用临时文件的算法,也就是归并排序算法,而是采用了优先队列排序算法。
其实,我们现在的 SQL 语句,只需要取 R 值最小的 3 个 rowid。但是,如果使用归并排序算法的话,虽然最终也能得到前 3 个值,但是这个算法结束后,已经将 10000 行数据都排好序了。也就是说,后面的 9997 行也是有序的了。但,我们的查询并不需要这些数据是有序的。所以,想一下就明白了,这浪费了非常多的计算量。
而优先队列算法,就可以精确地只得到三个最小值,执行流程如下:
- 对于这 10000 个准备排序的 (R,rowid),先取前三行,构造成一个堆;(对数据结构印象模糊的同学,可以先设想成这是一个由三个元素组成的数组)
- 取下一个行 (R’,rowid’),跟当前堆里面最大的 R 比较,如果 R’小于 R,把这个 (R,rowid) 从堆中去掉,换成 (R’,rowid’);
- 重复第 2 步,直到第 10000 个 (R’,rowid’) 完成比较。
这里我简单画了一个优先队列排序过程的示意图:
图 6 是模拟 6 个 (R,rowid) 行,通过优先队列排序找到最小的三个 R 值的行的过程。整个排序过程中,为了最快地拿到当前堆的最大值,总是保持最大值在堆顶,因此这是一个最大堆。图 5 的 OPTIMIZER_TRACE 结果中,filesort_priority_queue_optimization 这个部分的 chosen=true,就表示使用了优先队列排序算法,这个过程不需要临时文件,因此对应的 number_of_tmp_files 是 0。这个流程结束后,我们构造的堆里面,就是这个 10000 行里面 R 值最小的三行。然后,依次把它们的 rowid 取出来,去临时表里面拿到 word 字段,这个过程就跟上一大节的 rowid 排序的过程一样了。
我们再看一下上一大节的 SQL 查询语句:
select city,name,age from t where city='杭州' order by name limit 1000;
你可能会问,这里也用到了 limit,为什么没用优先队列排序算法呢?原因是,这条 SQL 语句是 limit 1000,如果使用优先队列算法的话,需要维护的堆的大小就是 1000 行的 (name,rowid),超过了我设置的 sort_buffer_size 大小,所以只能使用归并排序算法。
总之,不论是使用哪种类型的临时表,order by rand() 这种写法都会让计算过程非常复杂,需要大量的扫描行数,因此排序过程的资源消耗也会很大。
再回到我们文章开头的问题,怎么正确地随机排序呢?
# 3.3 随机排序方法
我们先把问题简化一下,如果只随机选择 1 个 word 值,可以怎么做呢?思路上是这样的:
- 取得这个表的主键 id 的最大值 M 和最小值 N;
- 用随机函数生成一个最大值到最小值之间的数
X = (M - N) * rand() + N
; - 取不小于 X 的第一个 ID 的行。
我们把这个算法,暂时称作随机算法 1。这里,我直接给你贴一下执行语句的序列:
select max(id),min(id) into @M,@N from t;
set @X= floor((@M-@N+1)*rand() + @N);
select * from t where id >= @X limit 1;
2
3
这个方法效率很高,因为取 max(id) 和 min(id) 都是不需要扫描索引的,而第三步的 select 也可以用索引快速定位,可以认为就只扫描了 3 行。但实际上,这个算法本身并不严格满足题目的随机要求,因为 ID 中间可能有空洞,因此选择不同行的概率不一样,不是真正的随机。比如你有 4 个 id,分别是 1、2、4、5,如果按照上面的方法,那么取到 id=4 的这一行的概率是取得其他行概率的两倍。如果这四行的 id 分别是 1、2、40000、40001 呢?这个算法基本就能当 bug 来看待了。
所以,为了得到严格随机的结果,你可以用下面这个流程:
- 取得整个表的行数,并记为 C。
- 取得 Y = floor(C * rand())。 floor 函数在这里的作用,就是取整数部分。
- 再用 limit Y,1 取得一行。
我们把这个算法,称为随机算法 2。下面这段代码,就是上面流程的执行语句的序列。
mysql> select count(*) into @C from t;
set @Y = floor(@C * rand());
set @sql = concat("select * from t limit ", @Y, ",1");
prepare stmt from @sql;
execute stmt;
DEALLOCATE prepare stmt;
2
3
4
5
6
由于 limit 后面的参数不能直接跟变量,所以我在上面的代码中使用了 prepare+execute 的方法。你也可以把拼接 SQL 语句的方法写在应用程序中,会更简单些。
这个随机算法 2,解决了算法 1 里面明显的概率不均匀问题。MySQL 处理 limit Y,1 的做法就是按顺序一个一个地读出来,丢掉前 Y 个,然后把下一个记录作为返回结果,因此这一步需要扫描 Y+1 行。再加上,第一步扫描的 C 行,总共需要扫描 C+Y+1 行,执行代价比随机算法 1 的代价要高。当然,随机算法 2 跟直接 order by rand() 比起来,执行代价还是小很多的。
现在,我们再看看,如果我们按照随机算法 2 的思路,要随机取 3 个 word 值呢?你可以这么做:
- 取得整个表的行数,记为 C;
- 根据相同的随机方法得到 Y1、Y2、Y3;
- 再执行三个 limit Y, 1 语句得到三行数据。
我们把这个算法,称作随机算法 3。下面这段代码,就是上面流程的执行语句的序列:
mysql> select count(*) into @C from t;
set @Y1 = floor(@C * rand());
set @Y2 = floor(@C * rand());
set @Y3 = floor(@C * rand());
select * from t limit @Y1,1; //在应用代码里面取Y1、Y2、Y3值,拼出SQL后执行
select * from t limit @Y2,1;
select * from t limit @Y3,1;
2
3
4
5
6
7
# 3.4 小结
今天这篇文章,我是借着随机排序的需求,跟你介绍了 MySQL 对临时表排序的执行过程。
如果你直接使用 order by rand(),这个语句需要 Using temporary 和 Using filesort,查询的执行代价往往是比较大的。所以,在设计的时候你要尽量避开这种写法。
今天的例子里面,我们不是仅仅在数据库内部解决问题,还会让应用代码配合拼接 SQL 语句。在实际应用的过程中,比较规范的用法就是:尽量将业务逻辑写在业务代码中,让数据库只做“读写数据”的事情。因此,这类方法的应用还是比较广泛的。