秒杀场景下的应用
参考:
# 1. Redis 支撑秒杀场景的关键技术和实践都有哪些?
秒杀是一个非常典型的活动场景,业务特点是限时限量,业务系统要处理瞬时的大量高并发请求,而Redis就经常被用来支撑秒杀活动。
不过,秒杀场景包含了多个环节,可以分成秒杀前、秒杀中和秒杀后三个阶段,每个阶段的请求处理需求并不相同,Redis 并不能支撑秒杀场景的每一个环节。这一节大将看一下 Redis 如何应用到秒杀的场景中。
# 1.1 秒杀场景的负载特征对支撑系统的要求
秒杀系统有两个明显的负载特征:
- 瞬时并发访问量非常高。一般数据库每秒只能支撑千级别的并发请求,而Redis的并发处理能力(每秒处理请求数)能达到万级别,甚至更高。所以,当有大量并发请求涌入秒杀系统时,我们就需要使用Redis先拦截大部分请求,避免大量请求直接发送给数据库,把数据库压垮。
- 读多写少,而且读操作是简单的查询操作。商品库存查询操作(读操作)要多于库存扣减和下单操作(写操作)。
Redis 具体可以在整个秒杀场景中哪些环节发挥作用呢?这就要说到秒杀活动的整体流程了,我们来分析下。
# 1.2 Redis 可以在秒杀场景的哪些环节发挥作用?
我们一般可以把秒杀活动分成三个阶段。在每一个阶段,Redis所发挥的作用也不一样。
# 1.2.1 第一阶段:秒杀活动前
在这个阶段,用户会不断刷新商品详情页,这会导致详情页的瞬时请求量剧增。这个阶段往往使用 CDN + 浏览器把商品详情页缓存下来就足够了,还不需要 Redis。
# 1.2.2 第二阶段:秒杀开始
此时,大量用户点击商品详情页上的秒杀按钮,会产生大量的并发请求查询库存。一旦某个请求查询到有库存,紧接着系统就会进行库存扣减。然后,系统会生成实际订单,并进行后续处理,例如订单支付和物流服务。如果请求查不到库存,就会返回。用户通常会继续点击秒杀按钮,继续查询库存。
简单来说,这个阶段的操作就是三个:库存查验、库存扣减和订单处理。因为每个秒杀请求都会查询库存,而请求只有查到有库存余量后,后续的库存扣减和订单处理才会被执行。所以,这个阶段中最大的并发压力都在库存查验操作上。为了支撑大量高并发的库存查验请求,我们需要在这个环节使用 Redis 保存库存量,这样一来,请求可以直接从Redis中读取库存并进行查验。
那么,库存扣减和订单处理是否都可以交给后端的数据库来执行呢?
- 订单处理可以交给数据库执行。因为订单处理往往涉及支付、出库等多个关联操作,需要使用数据库的事务。而且订单处理时请求压力已经不大了,数据库可以支撑这些请求。
- 库存扣减不能交给数据库执行,而是直接在 Redis 中执行。因为一旦用户查询到有库存就会下单,那么就会发起购买的请求,如果把库存扣减的操作放到数据库来执行,就会带来两个问题:
- 额外的开销。Redis 中保存了库存量,而库存量的最新值又是数据库在维护,所以数据库更新后,还需要和Redis进行同步,这个过程增加了额外的操作逻辑,也带来了额外的开销。
- 下单量超过实际库存量,出现超售。由于数据库的处理速度较慢,不能及时更新库存余量,这就会导致大量库存查验的请求读取到旧的库存值,并进行下单。此时,就会出现下单数量大于实际的库存量,导致出现超售,这就不符合业务层的要求了。
所以,我们就需要直接在Redis中进行库存扣减。具体的操作是,当库存查验完成后,一旦库存有余量,我们就立即在Redis中扣减库存。而且,为了避免请求查询到旧的库存值,库存查验和库存扣减这两个操作需要保证原子性。
# 1.2.3 第三阶段:秒杀活动结束后
在这个阶段,可能还会有部分用户刷新商品详情页,尝试等待有其他用户退单。而已经成功下单的用户会刷新订单详情,跟踪订单的进展。不过,这个阶段中的用户请求量已经下降很多了,服务器端一般都能支撑,我们就不重点讨论了。
这里总结下秒杀场景对 Redis 的需求:秒杀场景分成秒杀前、秒杀中和秒杀后三个阶段。秒杀开始前后,高并发压力没有那么大,我们不需要使用Redis,但在秒杀进行中,需要查验和扣减商品库存,库存查验面临大量的高并发请求,而库存扣减又需要和库存查验一起执行,以保证原子性。这就是秒杀对Redis的需求。
下图展示了秒杀场景需要 Redis 参与的两个环节:
下面介绍 Redis 支撑秒杀场景的方法。
# 1.3 Redis 的哪些方法可以支撑秒杀场景?
秒杀场景对 Redis 操作的根本要求有两个:
- 支持高并发。Redis 本身支持高并发,但注意如果有多个秒杀商品,我们可以使用切片集群来将压力分散开。
- 保证库存查验和库存扣减原子性执行。针对这条要求,我们就可以使用 Redis 的原子操作或是分布式锁这两个功能特性来支撑了。
# 1.3.1 基于原子操作支撑秒杀场景
在秒杀场景中,一个商品的库存对应了两个信息,分别是总库存量和已秒杀量。这种数据模型正好是一个key(商品ID)对应了两个属性(总库存量和已秒杀量),所以,我们可以使用一个Hash类型的键值对来保存库存的这两个信息,如下所示:
key: itemID
value: {total: N, ordered: M}
2
- 其中,itemID是商品的编号,total是总库存量,ordered是已秒杀量。
因为库存查验和库存扣减这两个操作要保证一起执行,一个直接的方法就是使用Redis的原子操作。原子操作可以是 Redis 自身提供的原子命令,也可以是 Lua 脚本。由于这里逻辑较为复杂,因此采用 Lua 脚本来原子性地执行这两个操作:
# 获取商品库存信息
local counts = redis.call("HMGET", KEYS[1], "total", "ordered");
# 将总库存转换为数值
local total = tonumber(counts[1])
# 将已被秒杀的库存转换为数值
local ordered = tonumber(counts[2])
# 如果当前请求的库存量加上已被秒杀的库存量仍然小于总库存量,就可以更新库存
if ordered + k <= total then
# 更新已秒杀的库存量
redis.call("HINCRBY",KEYS[1],"ordered",k) return k;
end
return 0
2
3
4
5
6
7
8
9
10
11
12
有了 Lua 脚本后,我们就可以在 Redis 客户端,使用 EVAL 命令来执行这个脚本了。最后,客户端会根据脚本的返回值,来确定秒杀是成功还是失败了。如果返回值是k,就是成功了;如果是0,就是失败。
# 1.3.2 基于分布式锁来支撑秒杀场景
使用分布式锁来支撑秒杀场景的具体做法是:先让客户端向 Redis 申请分布式锁,只有拿到锁的客户端才能执行库存查验和库存扣减。这样一来,大量的秒杀请求就会在争夺分布式锁时被过滤掉。而且,库存查验和扣减也不用使用原子操作了,因为多个并发客户端只有一个客户端能够拿到锁,已经保证了客户端并发访问的互斥性。
下面的伪代码显示了使用分布式锁来执行库存查验和扣减的过程:
# 使用商品ID作为key
key = itemID
# 使用客户端唯一标识作为value
val = clientUniqueID
# 申请分布式锁,Timeout是超时时间
lock =acquireLock(key, val, Timeout)
# 当拿到锁后,才能进行库存查验和扣减
if (lock == True) {
# 库存查验和扣减
availStock = DECR(key, k)
# 库存已经扣减完了,释放锁,返回秒杀失败
if (availStock < 0) {
releaseLock(key, val)
return error
}
# 库存扣减成功,释放锁
else{
releaseLock(key, val)
# 订单处理
}
}
# 没有拿到锁,直接返回
else
return
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
需要提醒你的是,在使用分布式锁时,客户端需要先向 Redis 请求锁,只有请求到了锁,才能进行库存查验等操作,这样一来,客户端在争抢分布式锁时,大部分秒杀请求本身就会因为抢不到锁而被拦截。所以这里有一个小建议:我们可以使用切片集群中的不同实例来分别保存分布式锁和商品库存信息。使用这种保存方式后,秒杀请求会首先访问保存分布式锁的实例。如果客户端没有拿到锁,这些客户端就不会查询商品库存,这就可以减轻保存库存信息的实例的压力了。
# 1.4 小结
这节课,我们学习了Redis在秒杀场景中的具体应用。秒杀场景有2个负载特征,分别是瞬时高并发请求和读多写少。Redis 良好的高并发处理能力,以及高效的键值对读写特性,正好可以满足秒杀场景的需求。我们通过使用 Redis 的原子操作和分布式锁两个功能特性有效地支撑秒杀场景的需求。
当然,对于秒杀场景来说,只用 Redis 是不够的。秒杀系统是一个系统性工程,Redis 实现了对库存查验和扣减这个环节的支撑,除此之外,还有 4 个环节需要我们处理好:
- 前端静态页面的设计。秒杀页面上能静态化处理的页面元素,我们都要尽量静态化,这样可以充分利用CDN或浏览器缓存服务秒杀开始前的请求。
- 请求拦截和流控。在秒杀系统的接入层,对恶意请求进行拦截,避免对系统的恶意攻击,例如使用黑名单禁止恶意IP进行访问。如果Redis实例的访问压力过大,为了避免实例崩溃,我们也需要在接入层进行限流,控制进入秒杀系统的请求数量。
- 库存信息过期时间处理。Redis中保存的库存信息其实是数据库的缓存,为了避免缓存击穿问题,我们不要给库存信息设置过期时间。
- 数据库订单异常处理。如果数据库没能成功处理订单,可以增加订单重试功能,保证订单最终能被成功处理。
最后,我也再给你一个小建议:秒杀活动带来的请求流量巨大,我们需要把秒杀商品的库存信息用单独的实例保存,而不要和日常业务系统的数据保存在同一个实例上,这样可以避免干扰业务系统的正常运行。